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Abstract We analyse the effects of time-varying synaptic background activily on the steady- 
state firing m e  of a compartmental model neural netwok with shunting. The background is 
taken to be a multi-component dichotomous coloured noise process distributed randomly across 
the compartments of each neuron. We exploit the fonnal similarity between the neural network 
model and a model of excitons moving on a lattice with random modulations of the local energy 
at each site. In particular, we use a dynamical coherent potential approximation and the method 
of panial cumulants to evaluate the singlaneuron Green's function averaged over the stochastic 
background, "is is then used to determine the firing rate. It is found that the Kring rate 
increaser with the variance and colrelation rime of the coloured noise process. 

1. Introduction 

Recent neurobiological experiments [l, 21 have demonstrated that background synaptic 
activity can influence the behaviour of cortical neurons. The basic mechanism underlying 
such an effect is that of shunting; increases in the conductance of excitatory andlor inhibitory 
synapses leads to local reductions in the membrane time constant z of a neuron. It has been 
found that variations in the level of background activity can lead to a ten-fold reduction in t, 
so this is a significant effect with a number of important consequences. (i) In the presence 
of constant inputs, a reduction in r due to background activity produces a corresponding 
reduction in the steady-state membrane potential and thus a lower firing rate [3]. (ii) 
Background activity can influence the mode of operation carried out by a neuron, since for 
small 7 a neuron acts like a coincidence detector whereas for larger r it performs the role of 
a temporal integrator. (iii) Spatially non-uniform patterns of background activity impinging 
on the extensive dendritic bee of a neuron results in a corresponding modulation of the 
spatial variation of t across the tree 141. This could, for example, influence how well distal 
dendrites contribute to events at the cell body or soma. (iv) Stochastic background activity 
is a source of multiplicative rather than additive noise. 

In a previous paper, we studied the effects of background synaptic inputs on the steady- 
state firing rate of a compartmental model recurrent neural network [3]. The inputs were 
assumed to be time-independent and randomly distributed across the compartments of each 
neuron. Using mean-field theory, the firing rate was expressed in terms of the ensemble- 
averaged singIe-neuron Green's function. The latter was shown to satisfy a matrix equation 
identical in form to that found in the tight-binding-alloy (TBA) model of excitations on a 
one-dimensional disordered lattice [S, 61. Standard techniques from statistical physics such 
as the coherent potential approximation were then used to perform the ensemble averaging 
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and thereby determine the firing rate. The main results obtained were (i) the steady-state 
firing rate of a compartmental model network decreases as the mean level of background 
activity (distributed across the neurons) increases and, more surprisingly, (ii) an increase in 
the (spatial) variance of the background activity distribution (for fixed mean) leads to an 
increase in the firing rate. 

One of the simplifying assumptions of [3] was to take the background activity to be 
time-independent. However, an individual neuron’s output activity is generally time-varying 
and has a strong stochastic component. (Often a neuron’s output spike train is modelled 
as a stochastic renewal process 171). One would expect from the law of large numbers 
that much of this stochasticity would be suppressed when the outputs of many neurons are 
combined to form the background field. On the other hand, one might expect variations in 
the level of background activity to oc.cur on a longer time-scale, reflecting changes in the 
overall level of a network‘s attention to a particular task, perhaps, or a change in effective 
state. (One may even speculate on the role of neuromodulators in controlling levels of 
background activity). Another possible mechanism is the spontaneous emergence of states 
of synchronous activity, which is thought to play an important role in neuronal information 
processing [8,9]. Hence, it is of interest to investigate the consequences of such temporal 
fluctuations in background activity, especially given the non-trivial behaviour already found 
for time-independent fluctuations in [3]. 

In this paper, therefore, we consider a compartmental model recurrent network with 
time-dependent stochastic background activity. We shall assume, for simplicity, that the 
background activity to each compartment randomly jumps between a finite number of 
discrete values (multi-component dichotomous noise). As in [3], spatial correlations between 
background inputs to different compartments of the same neuron and between different 
neurons are neglected. Given that one has to deal with multiplicative noise (point (iv)), 
the temptation is to consider the limiting case of a white noise process, which is the usual 
approach [7]. However, in this paper we shall show how it is possible to tackle the more 
general example of multiplicative coloured noise. Our basic method is to establish a formal 
similarity between the neural network model and a physical system in a heat bath [lo]. 
This then allows us to use various techniques from non-equilibrium statistical physics. It 
also explains why we choose a dichotomous noise process since this is often used to model 
the effects of a heat bath and allows exact calculations to be made. However, it is possible 
to extend ow analysis to other types of coloured noise process, which of these is most 
reasonable from the biological viewpoint is currently unknown to the author. (Note that 
viewing the effects of stochastic dendritic inputs in terms of a heat bath has also been 
considered by Bulsara er al [ill). 

We use a dynamical version of the coherent potential approximation [12] to reduce 
the compartmental model with multi-site temporal fluctuations to an equivalent system 
with an effective siteindependent constant background. This leads to a self-consistency 
condition for the background involving the averaged single-neuron Green’s function for a 
compartmental model with temporal fluctuations at a single site or compartment. Following 
[13,14], we calculate the latter using the time convolution generalized master equation (TG 
cm) formalism 1151 and the method of partial cumulants [16, 171. Solving the resulting 
self-consistency condition then allows us to determine the average 6ring rate of the network. 

The main result of this analysis is that a timevarying stochastic background leads to an 
increase in the steady-state firing rate of a network compared to a constant background of 
the same average intensity. Such an increase grows with the variance and the correlation 
time of the underlying coloured noise process. Although this is derived using dichotomous 
noise, we believe that the result is quite general. 
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2. Model 

Consider a model neuron consisting of an infinite chain of identical dendritic compartments 
labelled n = 0, Al,  3 2 . .  . . For simplicity, the soma is assumed to be a point processor that 
is isopotential with the central compartment n = 0. Let V. denote the membrane potential 
of the nth compartment; the membrane potential at the soma then satisfies V Vo. An 
application of Kirchoff s law leads to the set of coupled equations 

(1) 

where r and 5' are membrane time constants corresponding, respectively, to transverse and 
longtitudinal currents in the dendritic chain, and the last two terms on the right-hand side 
describe excitatory and inhibitory synaptic inputs. The rates of excitatory and inhibitory 
input stimulation to the nth compartment are denoted by E, and I., and S@, S(') are 
the associated membrane reversal potentials with S@) > 0 and S(') < 0. (For a detailed 
description of compartmental models see [181 and references therein). Comparing diagonal 
terms on the right-hand side of (l), we see that there is an input-dependent modulation of the 
membrane time constant r given by r-' + r-l + E ,  + I,,. In other words, both excitatory 
and inhibitory synaptic inputs reduce the effective transverse membrane time constant of the 
neuron. One immediate consequence of such a reduction is that large increases in somatic 
membrane potential due to high rates of input excitation cannot be sustained for very long. 
In the case of constant inputs, one finds that the steady-state membrane potential increases 
linearly with inputs at low levels of excitation but decreases again to some finite fixed 
value as the level of excitation becomes large. This in turn means that networks of such 
neurons can support states of self-sustained firing well below the maximum possible firing 
rate 119-211. 

A simple illustration of the above feature can be obtained by taking the spatial 
distribution of inputs across the chain to have the form of non-recurrent lateral inhibition 
[31. That is, an input that excites the mth compartment also inhibits all other compartments 
of the chain (see figure 1). More specifically, 

; i ;Vn( t )=-T+;; (Vn+i  d vn 1 +Va-i - 2 V . ) + E . [ S ' e ) - V ~ ] + I " [ S ' i ) - V ~ ]  

E,=a,E E a , ,  = 1 I n = C E m  (2) 
n m h  

where the a,, which determine the relative distribution of excitation across the chain, are 
held fixed. Under such a choice of inputs, the modulation of the time constant becomes 
site-independent thus considerably simplifying the analysis. (Later on we shall consider site- 
dependent modulations of this pattem of inputs arising from background activity. However, 

Figure 1. pattern of excitatory and inhibitory inputs for non-recurem lateral inhibition 
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the results then obtained conceming the effects of such background activity apply equally 
well to input distributions other than the one specified by equation (2). The latter is chosen 
for convenience). Assuming that the total excitation rate E is time-independent and S(') = 0 
(shunting inhibition), one can integrate equation (1) to obtain the solution 

--E(f-r')GzA(t - t') dt' (3) 
vm(t) = e - E r C ~ $ A ( t ) ~ , , ( ~ ) + ~  " I' F a n e  

where 

(4) G ( O ) ( ~ )  = e@ 14 Q ~ A  = - (: + 5) 8m.n + -(&m,n-I+ J m , n + I ) .  

We may identify G("(t - t') as the membrane potential response function or Green's 
function of the dendritic chain. That is, Ggj(r - t') determines the membrane potential of 
compartment m at time t in response to a unit impulse stimulation of compartment n at 
time t'. Note that the Green's function only depends on the time difference t - t'. Using 
stanilard results from the theory of diffusion on lattices, the Green's function has the explict 
form 

1 
r' 

where lp is a modified Bessel function of integer order and 

(6) 
I L  

E(k) = -+-(I -cask). r z' 
In the limit t -+ 00, equation (3) shows that the steady-state potential at the soma in 

response to constant non-recurrent lateral inhibition is [3] 

V m ( E )  = S@'E a.G:)(E) (7) 
n 

where G(O)(E) is the Laplace wansform of G(O)(t), 
m 

GCA(E) = 1 e-""G:A(t')dt'. (8) 

Note that the first term on the right-hand side of (3) is a transient term that vanishes in the 
h i t  t -+ 00, reflecting the fact that the matrix &(') has negative definite eigenvalues. An 
explicit expression for G(O)(E) may be obtained by substituting (5) into (8) and performing 
a contour integral. The result is [3] 

where 

h a ( E ) = l +  r'(E + T-') * /-. (10) 

It follows from (7) and (9) that for low levels of excitation E ,  the steady-state somatic 
potential is approximately a linear function of E. However, as E increases, the reduction 
in the membrane time constant becomes more and more significant so that V, begins to 
decrease. For large E, 

e Ca,(A-(E))" (1 1) 
n 

with L ( E )  + 0 as E + 00. Hence, limE,, Vm(E) = S%O. 
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Now consider a population of such excitatory neurons with all-to-all coupling such that 
the net rate of excitation E impinging on an individual neuron is determined by the average 
firing rate of the population. Within a mean-field approximation, the steady-state behaviour 
is then given by the self-consistency condition [19] 

(12) 

where j?, y and K are constants, and the sigmoid function f(V) represents the instantaneous 
firing rate of a neuron. The maximum firing rate fmox is determined by the absolute 
refractory period. Using graphical methods [19,20], it can be shown that there are two 
stable solutions to (12), one corresponding to the quiescent state E = 0 and the other to a 
state with firing rate well below fmox. Note that if the voltage-dependent modulation of the 
membrane time constant were neglected, then V m ( E )  would be~linear in E and the second 
stable state would have a firing rate close to fmox, 

Another consequence of the input-dependent modulation of membrane time constants 
is the influence of background synaptic activity. Indeed, recent experiments have found 
that variations in background activity can lead to the membrane time constant taking 
a range of values between 5-80 ms [1,2]. In our previous paper [3], we included 
background activity into the above neural network model by assuming that there is an 
additional time-independent random background contribution to the inhibitory rate I. such 
that In = C,+l E, +en. The were dismbuted randomly across the population of neurons 
according to a site-independent probability density PO). Mean-field arguments now result in 
the self-consistency condition BE = (f(Vm(E)))i. Using the fact that the network settles 
into a state of low firing rate, the function f can be linearized so that the evaluation of the 
steady-state firing rate reduces to the problem of calculating the Laplace transform of the 
ensemble-averaged Green’s function (Go” @))c where G(t) = er(@”+ diag(t)). Exploiting 
the formal similarity between our compartmental model and the tight-binding alloy model 
describing excitations on a disordered lattice [ S ,  61, a coherent potential approximation 
scheme can be usedto perform the ensemble averaging. This involves taking each dendritic 
compartment to have an effective site-independent background activity A ( E )  for which the 
associated Green’s function is G(E)  = G(O)(E + A ( E ) ) .  The self-energy term A ( E )  is 
assumed to~take into account any statistical fluctuations (at least at the singlesite level), and 
this leads to a self-consistency condition for A(E) .  Solving this self-consistency condition, 
we, can then determine the average firing rate [3]. 

In this paper, we extend the above analysis to the case of thedependent stochastic 
background activity. For concreteness, suppose that each neuron of the network has the 
pattern of stimulation given by (2) together with (i) a constant site-independent background 
contribution I and (ii) a stochastic contribution en (t) at compartment or site n, 

fmox 
BE = f (Vm(E)) f(V) = + e-y(v-x) 

In( t )  = Em +en@) + I .  (13) 
m#n 

We shall assume that the stochastic process cn(t) is generated independently for each neuron 
(cross-correlations between neurons are zero) according to a multi-component dichotomous 
coloured noise process [13,14]. That is, &(t) = E:, c,?(t) where each c,?(t) is a 
stationary dichotomous coloured noise process and the composed process is determined 
completely in terms of the first and second moments 

( @ ( t ) )  = 0 ($f)(t)$/)(t’)) = 8ij&,y2exp(--hlf - t’l). (14) 
Here (. . .) denotes averaging over the stochastic process, y is the strength of the background 
fluctuations, and A-’ is the correlation time. Note that the composed process tn(f) jumps 
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between the values iyf, y & . . . & y (M terms). On physical grounds, we require that 
I + <(r) > 0 for all n (since this quantity represents a rate of inhibition). This leads to the 
condition My d I .  

Substituting equations (2) and (13) into (1) leads to the stochastic differential equation 

(15) 
d 
dt 
-V(t) = Q(t)V(t) - EV(t) + ES“)a 

with $0 = 0, 

Q(t) = (Q‘O’ - I l )V( t )  + Q“’(t)V(t) (16) 

and a is a vector whose components a, determine the distribution of excitation across 
the dendritic chain. Equation (15) describes a system perturbed by multiplicative coloured 
noise. In general, it is not possible to analyse such systems without some further simplifying 
approximations, for example, taking a white noise limit so that Fokker-Planck techniques 
can be used [ll]. However, for our particular model such simplifications will not be 
necessary since we can treat the effects of the noise exactly. It is clear from equations 
(16) and (4) that the constant background I reduces the time constant r according to 
r-1 + r-’ + 1. 

QgL(t) = -<n(t)&,m 

Integrating equation (15) and neglecting transients we obtain 

where 

and T denotes the time-ordering operator. That is, T[Q(t)Q(t’)] = Q(t)Q(r’)s(f - t’) + 
Q(r’)Q(t)O(r’ - t) where O ( x )  = 1 if x > 0 and S ( x )  = 0 if x < 0. Note that t ime 
translation invariance no longer holds as shown by the fact that G(t, t’) does not simply 
depend on the time difference t-t‘. However, this invariance is recovered when the Green’s 
function is averaged over the stochastic process since the latter is a stationary process. Thus 
we can define an averaged Green’s function H such that 

H(t - t’) = (G(t, t’)) . (1% 

It follows that the averaged somatic membrane potential has a unique steady-state given by 

(V-(E)) = S ( ~ ) E ~ ~ , H ~ ( E )  (20) 
n 

where H(E)  is the Laplace transform of the averaged Green’s function H(t) .  Using mean- 
field arguments and a linear output functionf, (which is reasonable since we are interested 
in the state of low firing rate), the level of excitation E in the network is determined by the 
self-consistency condition (cf [3]) 

BE = (Vm(E)) +or (21) 

for constants (Y and B. 
In section 3 we calculate the average Green’s function H(t)  using techniques from 

non-equilibrium statistical physics. However, those not interested in the technical details 
can go straight to section 4 where the results of our analysis are presented. 
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3. Calculation of average Green's function 

In this section, we calculate the Laplace transform of the averaged single-neuron Green's 
function, H(E) ,  by exploiting the formal similarity between the stochastic compartmental 
model equation (15) and the dynamical equation describing excitons moving on a one- 
dimensional lattice with random modulations of the local energy at each site [E-141. The 
latter is a well known example of a physical system in a heat bath. We can then solve the 
mean-field equation (21) to determine the average firing rate of the compartmental model 
network. 

3.1. Dynamical coherent potential approximation 

The bare Green's function G(t, to) of (18) satisfies he differential equation 

(22) 

Following Sumi [12], we use a dynamical coherenr potential approximation to replace 
the random fluctuations en@) appearing in the matrix &(t) of (16) by an effective site- 
independent constant synaptic background A. The associated Green's function is 

(23) 
I t  follows that the Laplace transform G(E) = G ( O ) ( E  + A  + r ) .  The self-energy term A 
is determined by a self-consistency condition, which ensures that any statistical fluctuations 
at the single-site level are taken into account. Within this coherent potential approximation, 
the averaged Green's function H(E)  appearing in the mean-field equation (20) is simply 

The derivation of the self-consistency condition for A proceeds along analogous lines 

d 
$3, fo) = Q(t)G(t. to) G(ro, fo) = 1 .  

G(t) = exp(t4) Q = Q(') - (A + 1)l. 

G ( E ) .  

to [12]. First, write the matrix Q(r) as 

Q,.(s = [Qlmn + (A - emmO))&" (24) 
The background A is determined by the condition that statistical fluctuations arising from 
the second term on the right-hand side vanish at each single site. (Under the coherent 
potential approximation one neglects multi-site correlations). It then suffices to consider a 
compartmental model in which temporal fluctuations occur at only one site n = 0, say. The 
corresponding matrix Q is 

Define a new pair of Green's functions 

Under the coherent potential approximation, the Green's function G ( E )  calculated using 
Q should equal the averaged Green's function &(E) obtained using &(t). In order to 
determine A it is sufficient to consider the particular component m = n = 0 [12]. Setting 
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g(E) = &(E), g ( E )  = (?$(E) and h ( E )  = &(E) we have the self-consistency 
condition 

(2% 
Below we shall show that h ( E )  depends on A through its dependence on g(E) ,  where the 
latter is approximated by 

h(E)  = j ( E )  G G g ) ( E  + A + I ) .  

g ( E )  = -A]-'. (30) 

3.2. Single-site dynamical disorder and the method of partial cumulants 

Dynamical CPA has reduced the problem to one of calculating the averaged Green's function 
h(E)  of a compartmental model with single-site dynamical disorder. The latter can be 
achieved using the time-convolution generalized master equation (TCGME) approach [U] 
and the method of partial cumulants [16,17]. Consider the Green's function equation 

(31) 

In the generalized master equation approach, one averages (31) without first solving it; this 
naturally leads to the partial cumulants, which can be calculated explicitly. To achieve the 
averaging procedure, it is convenient to introduce the projection operator P ,  which averages 
everyrhing to the right of it and to let = 1 - P .  By definition, H = PG. The operator 
P commutes with any deterministic mahix such as @O), that is, = Q(O)P. The 
vanishing of the first moment in (14) implies that PQ(')(t)P = 0. Acting from the right 
on both sides of equation (31) with the operator P or L, we obtain the two equations 

d 
-G(t, to) = Q(t)G(r, to) dt GOo, to) = 1. 

(32) 
d 
-PG(t, to) = Q")PG(t, t o )  + PQ("(t)tG(t, to) 
dr 

and 

(33) 
d z L G ( t ,  to) = {Q") + LQ("(t)}LG(t, to) + Q(l)(t)PG(t, t o ) .  

Solving for the quantity LG(t,to) by integrating equation (33) and using the identity 
GOO, 10) = 1, we obtain an integro-differential equation for the averaged Green's function, 

I' (34) 
d -  -H(r) = Q ( O ) f i ( t )  + 
dt 

K(t - r')fi(r')dt' 

where K is the so-called memory operator of this time-convolution generalized master 
equation 

K(t - t') = PQ(l)(r)T' [exp (L[Q(') + L@l)(?)]dt')] Q(')(t ').  (35) 

In equation (34). we have exploited the time translation invariance of the averaged Green's 
function to set to = 0. 

In order to calculate the memory operator, we perform an expansion of the time- 
ordered exponential in (35), which effectively corresponds to a power series expansion 
in the background strength y (equations (14) and (26) imply that Q"'(t) Ft: y). Since the 
random background is now assumed to impinge on a single compartment alone (singlesite 
modulation), one finds that the memory operator matrix K(t) has a single non-zero matrix 
element, that is, Kmn(t) = k(t)S,.oS,.o with 
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Here 7; = t; - t i - , ,  i = 1, ..., 2n- 1 (with to = 0, tk-1 = t ) .  G(')(t) is the Green's function 
in zero time-varying background (equation (27)), and C ( ~ ) ( O ,  I ] . .  . . , t ) ,  n = 1,2  are the 
partial cumulants for the stochastic process .$(t), 

(37) 

Note that all partial cumulants of odd order are zero due to the fact that the stochastic 
process has zero mean. 

The partial cumulants for dichotomous coloured noise are calculated in [17] using 
diagrammatic techniques. It tuns  out that dZn) depends on the same set of time differences 
y as appears in the product on the right-hand side of (36) such that the individual terms 
of the expansion (36) display a multi-convolution form. Therefore, as shown in [17,13], 
we can Laplace transform equation (36) and after some rearrangement express k ( E )  as a 
continued fraction 

c(2")(0, q ,  . . . , t>-2, t )  = P.$(t).CB(t>-z) ~...Y (t,).CB(O). 

(38) 
Y k ( E )  = 

g(E+A)-' - 
Y2e,M g ( E  +2A)-' - 

Y "eM" . -  
g(E + MA)-' 

where A-' is the correlation time, 8: = k(M + 1 - k )  and g ( E )  is given by equation (30). 
Note that the continued fraction can be rewritten in the standard form 

(39) 
1 

1 
1 

'. + - 

a1 + 
1 a2 + 

a M  

where 

It is clear that [bl,bl, ._., b M )  forms an altemating sequence. This differs from the 
analogous quantum mechanical expression [I31 where the bk's are all positive. The source 
of this difference is that in the quantum mechanical setting the various matrix operators 
are multiplied by a factor -i/h, which leads to the insertion of a term (-l)n+' into the 
sumover n in (36). The presence of an altemating sequence means that k(z)  can have 
singularities for real z .  However, these singularities will be absent in our model since the 
matrix Q(') + Q(')(t) has negative defininite eigenvalues, which reflects the passive nature 
of the system. 

Having obtained the Laplace transform of the memory operator, we can now proceed 
to solve (34). Laplace transforming both sides of (34) gives 

H ( E )  = [ E r  - Qc0) - K ( E ) I - ' .  (41) 

A series expansion and an application of Dyson's equation then yields 
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3.3. Self-consistency condition for effective synnptic background 

We conclude that using dynamical CPA, the averaged Green's function is approximated by 

H(E)  M G"(E + A ( E )  + I )  (43) 
where A(E)  satisfies the self-consistency condition (29). The latter involves the averaged 
Green's function h(E)  of a compartmental model with single-site disorder, which can be 
obtained using the method of partial cumulants. In particular, setting m = n = 0 in (42), 

Combining equations (29) and (30) into (44) one finds that the self-consistency condition 
for A reduces to 

A = -k(E,  A ) .  (45) 
The dependence of k(E)  on the background field through the presence of g ( E )  in equation 
(38) has been made explicit. As we shall now demonstrate, equation (45) yields a unique 
non-zero solution for the effective background satisfying A ( E )  < 0. First, consider the 
case M = 1. Equations (38), (45) and (30) yield the self-consistency condition 

This is a quadratic in A which has the solution 

(only the negative square root is valid since we require h ( E )  -+ 0 as y + 0). Although 
?(.E) itself depends on A (equation (29)), it is clear from (47) that A(E)  < 0. Equation 
(46) is the extension of our previous result for static disorder (equation (4.18) of [3]) to 
the case of dynamical disorder. The dynamical nature of the process is reflected by the 
presence of the correlation time A-l; the static result is recovered in the limit A -+ 0. 

To explore the dependence of the effective background on A, we shall consider the limits 
of weak and mong disorder. The degree of disorder is measured by 6 = y+'/2. For small 
6 (weak disorder), 

y27' 
A ( E )  M -y*G$)(E +A) = - 

t ' (E + Z + A +  r-l)  

where we have used equations (9) and (29). On the other hand, in the case of strong 
disorder, &E) k ( E  + I + A  + r-')-l so that 

Y 2  A ( E )  M - 
E + I + A + 5-l . (49) 

In both cases, we see that the size of the effective background IA(E)I is a monotonically 
decreasing function of A with A(E)  + 0 as A + CO. 

Next consider the case M = 2. The self-consistency condition now becomes 

Equation (30) and some algebra leads to the equation 

A[l -Ag(E+A)][l - A g ( E + 2 A ) ] ' = 2 y 2 ~ ( E + A ) [ 2 ~ ( E + 2 A ) A  - 11. (51) 
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By continuity from the solution A(E)  = 0 at y 2  = 0, we see that the only physical solution 
to equation (49) satisfies A ( E )  c 0. That is, when y2 << 1 we find that Ihl << 1 and 
hence g(E + A)A < 1, 2g(E  + 2h)A < 1. Thus for small y2 the term in square brackets 
on the left-hand side of (5 1) is positive whilst the right-hand side is negative, which means 
that A < 0. This solution remains negative for all y2. Similarly, one can show that the 
effective synaptic background is negative for any M. However, it should be noted that the 
physical restriction My < I implies that y2 + 0 as M -+ CO. Thus within the constraints 
of the model only low order dichotomous noise process will give a significant effect. In all 
cases Ih(E)I is a decreasing function of A. 

4. Results for average firing rate 

The main results of the analysis of section 3 are as follows: 

(i) The average Green's function H(E)  can be approximated by 

H(E)  F= G'"(E + A ( E )  + I) (52) 
where G@) is the Green's function for a uniform dendritic chain of compamnents, 
equation (9), I is the constant component of the background and A ( E )  is an effective 
background arising from the random fluctuating part b ( t )  (see equation (13)). The 
effective background can be obtained by solving the self-consistency condition (45). 

(ii) The effective background is negative, A ( E )  < 0, for all E. 
(iii) lA(E)( is a monotonically increasing function of the variance y2 and the correlation 

time A-' of the dichotomous coloured noise process L ( t ) .  

Inspection of (3, (8) and (52) then shows that for a given excitatory input E the synaptic 
background given by (13) leads to a modification in the membrane time constant r of the 
form 

(53) 
As discussed in section 2, a reduction of the membrane time constant due to a constant (in 
space and time) synaptic background I results in a lowering of the steady-state firing rate of 
a recurrent compartmental model network. The analysis of this paper shows that the opposite 
effect occurs in the presence of a fluctuating background, as represented by the dichotomous 
noise process &(t).  Averaging over this process leads to a negative contribution to the 
effective background activity, which increases 7 and hence the firing rate. The size of this 
negative contribution grows as one increases either the variance y 2  or the correlation time 
A-'. 

To give a simple illustration of the above, consider single-component dichotomous noise, 
and assume for simplicity that excitatory inputs only impinge on compartment n = 1, that 
is, a. = &J.' Combining equations (20), (21) and (43). the steady-state firing rate of the 
network (in the linear approximation) is then f = BE* where E* is the solution to the 
mean-field equation 

(54) 

and h ( E )  is the solution to (46). The variation of the firing rate f with the variance 
y2 and A is shown in figures 2 and 3, respectively. We have taken parameter values 
a =.O, p = 0.02, r = 1 (which fixes the time-scale), r' = 5 and Sc" = 1 (which fixes 
the units of the membrane potential). The constant component has the value I = 1, which 
corresponds to a reduction in t by a factor of 2; the maximum allowed value of y is then 

r-' + r-l + I  - lA(E)l .  

B E  = s ( c ) E G ( O )  01 ( E + I  + A(E) )  +a 
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Figure 2. Firing me f and effective background A as a function of standard deviation y of 
single component dichotomous coloured noise process. Tie is measured in units of r-l. 
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1. It is clear from figures 2 and 3 that f increases with y (for X = 0) but decreases 
with X (for y = 1). It can be seen that the maximum size of the effective reduction in 
background activity is approximately 0.3, which is almost a third of the constant level I ;  
hence, the effect of fluctuations is not negligible for this choice of parameters. It should be 
noted, however, that the results are sensitive to the particular value of r’. For example if 
r‘ (< r ,  then the effect of fluctuations, is much smaller. The appropriate value of t’ is very 
much model-dependent, since it is determined by the particular geometry of the neurons. 
The time constant t, on the other-hand, is more of a universal quantity being aproximately 
independent of the geometry. Very similar results to the above are obtained when M = 2 
and equation (50) is used to determine A@). 

5. Discussion 

Recent experiments indicate that due to shunting, variations in background synaptic activity 
can produce a range of values for the membrane time constant of a neuron between 5-80 ms. 
We have explored one consequence of such a feature, namely the effect of a fluctuating 
background on the steady-state firing rate of a recurrent network. In particular, we have 
shown that a fluctuating background leads to an increase in the firing rate compared to 
a constant background of the same average intensity. Such an increase grows with the 
variance and the correlation time of the underlying coloured noise process. We expect such 
a result to be quite general, that is, it does not require the stochastic background to be 
a dichotomous coloured noise process nor the distribution of external inputs to have the 
special form of non-recwnt lateral inhibition. For example, following [14] one could 
easily extend our analysis to incorporate a more general s:ochastic process that interpolates 
between dichotomous, Gaussian and compound Poisson processes. Other choices for the 



Averagefiring rate of a neural network with dynamical disorder 2469 

distribution of inputs E, across each neuron's compartments could he handled using some 
form of perturbation expansion about the uniform case considered here. A more interesting 
and difficult question concems how spatial correlations in the distribution of stochastic 
background activity across the network affects the average firing rate. 

Another possible extension of our analysis is studying the effects of a fluctuating 
background on the linear response of a lateral inhibitory network [22]. (Such a system 
can be described in terms of coupled differential equations almost identical in form to those 
of a compartmental model neuron). Here one is concerned with Fourier rather than Laplace 
transforms of the averaged Green's function so that E is replaced by i o  where o is the 
frequency of response. Consequently, the self-energy contribution A becomes complex 
leading to a non-trivial modification .in both the phase and amplitude of response. 

Finally, given that background activity can influence the behaviour of a biological 
neural network, it is of interest to determine whether or not there is some mechanism for 
controlling such background activity (by the release of nenromodulators?), and if so, how 
this mechanism could be exploited by the system? We hope to explore this and other issues 
elsewhere. 
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